DATA SHEET DIESEL GENERATOR SET ### **►** Model ## GSBD21750L-UL **ENGINE BRAND** BAUDOUIN **ENGINE MODEL** **>>** 16M33G4D2/6 ALTERNATOR BRAND >> STAMFORD GENERATOR CONTROLLER **DSE 7310** ## **▶** GENSET RATING | ENGINE | ALTERNATOR | VOLTAGE | PH | Hz | STANDBY POWER | | POWER FACTOR | CURRENT | |-------------|------------|---------|------|-----|---------------|------|--------------|---------| | ENGINE | ALIERNATOR | V | 1.11 | 112 | kW | KVA | | Α | | | | | | | | | | | | | S7L1D-F4 | 480/277 | 3 | 60 | 1750 | 2187 | 0.8 | 2634 | | 16M33G4D2/6 | S7L1D-F4 | 600/346 | 3 | 60 | 1750 | 2187 | 0.8 | 2107 | | | | | | | | | | | ## Certifications ## **► ENGINE FEATURES** | >> | BRAND | ■ BAUDOUIN | |-----------------|---------------------------------------|--------------------------------| | >> | MODEL | ▶ 16M33G4D2/6 | | >> | EXHAUST EMISSIONS | TIER 2 | | >> | RPM | ▶ 1800 | | >> | STANDBY RATING kwm | ▶ 1893 | | >> | STANDBY RATING bhp | ▶ 2539 | | >> | PRIME RATING kwm | ▶ 1750 | | >> | PRIME RATING bhp | ▶ 2347 | | >> | NUMBER OF CYLINDERS | ▶ 16 | | >> | ASPIRATION | ■ TURBOCHARGED AND AFTERCOOLED | | >> | DISPLACEMENT in3 | ▶ 3191.6 | | >> | ENGINE AIR FLOW CFM (m3/min) | ▶ 5595.3 | | >> | GOVERNOR TYPE | ■ ELECTRONIC | | >> | CONTROL VOLTAGE v | ▶ 24 | | | BORE/STROKE, in (| , | | | COOLANT CAPACITY WITHOUT RADIATOR gal | | | >> | OIL CAPACITY, TOTAL gal | ▶ 46.2 | ## **▶ FUEL CONSUMPTION** | STA | STANDBY POWER | | | | | | | |------|---------------|--------------|--|--|--|--|--| | LOAD | GAL/hr | L /hr | | | | | | | 100% | 127.7 | 483.4 | | | | | | | 75% | 92.4 | 349.7 | | | | | | | 50% | 62.8 | 237.8 | | | | | | | 25% | 34.3 | 130 | | | | | | ## **► ALTERNATOR FEATURES** | >> | BRAND | STAMFORD | |----|------------------------|------------------------------| | >> | MODEL | S7L1D-F4 | | >> | FREQUENCY | ▶ 60 Hz | | >> | PHASES | ▶ 3 | | >> | WINDING LEADS | ▶ 6 | | >> | INSULATION SYSTEM | H CLASS | | >> | CONTROL SYSTEM | SEPARATELY EXCITED BY P.M.G. | | >> | PROTECTION | ▶ IP23 | | >> | POWER FACTOR | ▶ 0.8 | | >> | COOLING AIR CFM | • | | >> | VOLTAGE REGULATION (%) | +-0.5 | ### **▶** GENERATOR CONTROLLER ## » MODEL **DEEP SEA 7310** The DSE7310 MKII is an Auto Start Control Module and the DSE7320MKII is an Auto Mains (Utility) Failure Control Module suitable for a wide variety of single, diesel or gas, gen-set applications. Monitoring an extensive number of engine parameters, the modules will display warnings, shutdown and engine status information on the back-lit LCD screen, illuminated LEDs, remote PC and via SMS text alerts (with external modem). The DSE7320 MKII will also monitor the mains (utility) supply. The modules include USB, RS232 and RS485 ports as well as dedicated DSENet® terminals for system expansion. #### **KEY FEATURES** - · 4-Line back-lit LCD text display - Multiple Display Languages - Five key menu navigation - LCD alarm indication - · DSENet expansion compatibility - Internal PLC editor - Protections disable feature - Fully configurable via PC using USB, RS232 & RS485 communication - Front panel configuration with PIN protection - Power save mode - 3 phase generator sensing and protection - 3 phase mains (utility) sensing and protection (DSE7320 MKII only) - Automatic load transfer control (DSE7320 MKII only) - · Generator current and power monitoring (kW, kvar, kVA, pf) - · Mains current and power monitoring (kW, kvar, kVA, pf) (DSE7320 MKII only) - · kW and kvar overload and reverse power alarms - · Over current protection - Unbalanced load protection - Independent earth fault protection - · Breaker control via fascia buttons - Fuel and start outputs configurable when using CAN - 6 configurable DC outputs - 2 configurable volt-free relay outputs - 6 configurable analogue/digital inputs - Support for 0 V to 10 V & 4 mA to 20 mA sensors - 8 configurable digital inputs - Configurable 5 stage dummy load and load shedding outputs - CAN, MPU and alternator frequency speed sensing in one variant - · Real time clock - Manual and automatic fuel pump control - Engine pre-heat and post-heat functions - · Engine run-time scheduler - Engine idle control for starting & stopping • Fuel usage monitor and low fuel level alarms - Simultaneous use of RS232 and RS485 communication ports - True dual mutual standby using RS232 or RS485 for accurate engine hours balancing. - MODBUS RTU support with configurable MODBUS pages. - Advanced SMS messaging (additional external modem required) - Start & stop capability via SMS messaging - 3 configurable maintenance alarms - · Compatible with a wide range of CAN engines, including tier 4 engine support - · Uses DSE Configuration Suite PC Software for simplified configuration - Licence-free PC software - IP65 rating (with supplied gasket) offers increased resistance to water ingress - · Modules can be integrated into building management systems (BMS) using MODBUS RTU #### **KEY BENEFITS** - Automatically transfers between mains (utility) and generator (DSE7320 MKII only) for convenience. - Hours counter provides accurate information for monitoring and maintenance periods - User-friendly set-up and button layout for ease of use - Multiple parameters are monitored & displayed simultaneously for full visibility - The module can be configured to suit a wide range of applications for user flexibility - PLC editor allows user configurable functions to meet user specific application requirements. ### **▶ DIMENSIONS AND WEIGHT** ## ► ACOUSTIC ENCLOSURE Acoustic enclosure designed and manufactured with 14 gauge carbon steel sheet, polyurethane acoustic coating, access and air expulsion to avoid gas accumulation, drainage system to avoid liquid accumulation. Electrostatic painting for extended life. We have options for enclosures in aluminum or stainless steel ### ► STANDARD FEATURES & ACCESSORIES | \bigcirc | DSE 9470 Battery Charger | |------------|--| | \bigcirc | Battery and Battery Rack | | \bigcirc | ABB Main Line Circuit Breaker | | \bigcirc | MX321AVR | | \bigcirc | Hotstart Pre heater RMP-CSM10902-000 | | \bigcirc | Residential Grade Silencer Open Unit | | \bigcirc | Critical Grade Silencer Inside Enclosure | | | | | <u> </u> | | |------------|--| | \bigcirc | Emergency Stop Button | | \bigcirc | Flex Fuel Lines | | \bigcirc | Protection Covers for Rotating Parts | | \bigcirc | Exhaust Insulation Cover | | \bigcirc | Anti Vibration Pads between Engine/Alternator & Base Frame | | \bigcirc | Operation and Maintenance manuals | | \bigcirc | 24 Months /1000 hours Limited Standby Warranty | ## **▶ OPTIONAL ACCESSORIES** | Paralleling Adder (DSE8610 & Motorized Breaker) | Enclosure AC light and On/Off Switch | |---|---| | 120V GFCI Receptacle | Enclosure DC light and On/Off Switch | | 240V Receptacle | Enclosure space Heater (1500w/120v) | | Alternator Strip Heater | Load Center / Distribution Board (100 A, 12 Breaker) | | Battery Blanket Heater | Load Center / Distribution Board (200 A, 8 Breaker) | | Battery Disconnect Switch | AVR UPGRADE | | Battery Pad Heater | Oil Pan Heater | | Battery Restraint | Relay - 10A Common Alarm | | Control Panel Heater | Relay - 10A Run Relay | | DSE2157 Output Module (8 dry contacts) | Remote E-Stop- Breaker Glass Type / Nema 3R | | DSE2520 Remote Display Module | Remote E-Stop- Breaker Glass Type / Nema 4X | | DSE2548 Remote Annunciator (16 light) | Remote E-Stop- Flush Mount | | DSE2548 Remote Annunciator (24 light) | Remote E-Stop- Surface Mount | | DSE2548 Remote Annunciator (8 light) | Remote E-Stop- Visual/ Plastic Hinged Cover | | DSE890 3G GATEWAY | Spring Isolator- Non Seismic (ACE 121 Series) SKIRT NOT INCLUDED | | GSM/GPS ANTENNA 3M RG-174, GSM-SMA(M), GPS-SMA(F) | Spring Isolator- Seismic/Restraint (ACE 821 Series) SKIRT NOT INCLUDE | | DSE9641 10A Battery Charger | Voltage Adjust Rheostat | | DSE9470 10A Battery Charger | Automatic Transfer Switch | ## **▶ OPTIONAL UL142 SUB BASE TANK** | | 24 hr | 48 hr | 72 hr | |-----------------------|-------|-------|-------| | Fuel Capacity (gal) | 3100 | 6200 | | | Dimensions (L/W/H) in | | | | | Weight lb | | | | IGSA CORP. 5918 Santa Ave Laredo, Texas 78041 Tel. +1 956.7914.472 Model: **16M33G4D2/6** Date: 30/11/22 **PowerKit Engine Datasheet** Page: 1/4 ### Ratings | | Gross Engine Output | | | | Net Engine Output | | | | |------|---------------------|--------|------|------|-------------------|--------|------|------| | RPM | PF | RP | ES | SP | PF | RP | ES | SP | | | kWm | ВНР | kWm | ВНР | kWm | ВНР | kWm | BHP | | 1800 | 1750 * | 2347 * | 1893 | 2539 | 1674 * | 2245 * | 1817 | 2437 | 1 kWm = 1,34102 BHP When the engine is used with a cooling system using an electrically driven fan, net engine output data may change and quoted figures should be used for reference only #### **Basic data** | Engine model | | 16M33G4D2/6 | |---------------------------------|---------------------------------------|---------------------------------| | N° of Cylinders / Valves | | 16 / 64 | | Cylinders arrangement | | At Vee | | Bore x Stroke (mm) | | 150 x 185 | | Displacement (L) | | 52.3 | | Thermodynamic Cycle | | Diesel 4 stroke | | Firing Order | A1-A7-B4-B6-A4-B8- | -A2-A8-B3-B5-A3-A5-B2-A6-B1-B7 | | Mean Piston Speed (m/s) | | 11.1 | | BMEP @ ESP (Bar) | | 24.13 | | Cooling System | | Liquid (water + 50% antifreeze) | | Injection System | | Direct | | Fuel System | | High Pressure Common Rail | | Aspiration | | Turbocharged and Aftercooled | | Compression ratio | | 15 : 1 | | Flywheel housing | | SAE 0 | | Flywheel | | 18" | | Rotation Viewed from Flywhe | el | Counterclockwise | | Allowed static bending mome | nt of the flywheel housing | 1 | | N° of teeth on flywheel ring ge | ear | 194 | | Inertia of flywheel (kg•m²) | | 7.2 | | Inertia of crankshaft (kg•m²) | | 10.1 | | Emission standard | | EPA Tier2 | | Overall Dimensions with radia | itor (Length x Width x Height) (mm) | 3967x 2237 x 2485 | | Engine dry weight without rad | iator and without radiator pipes (kg) | 5200 | | Engine dry weight with radiate | or and radiator pipes (kg) | 6470 | | Engine wet weight with radiate | or (includes oil, coolant) (kg) | 7171 | ★ The indicated PRP Power is for reference only. This engine is designed for emergency standby power (ESP) applications only. Model: 16M33G4D2/6 Date: 30/11/22 Page: 2/4 ## **PowerKit Engine Datasheet** Air intake system Air intake temperature rise (°C)≤ 5 Air intake restriction clean filter (mBar)≤ 30 Air intake restriction dirty filter (mBar)≤ 62 Recommended air flow @ PRP (m³/min)151 Recommended air flow @ ESP (m³/min)158.5 Aftercooling system Aftercooler system typeAir to Water Max. difference between intake temperature and ambient temperature (°C)30 Max. intake pressure drop of aftercooler (mBar)80 Lubrication system Oil capacity Low / High (L) Oil pressure in normal condition idle speed (Bar)≥ 2 Lowest oil pressure alarm (shutdown) (Bar)2 High Oil Pressure Warning Max. oil temperature (°C) Oil fuel consumption ratio based on engine fuel consumption data≤ 0.3 % Heat balance test data (with ambient temperature 32 °C) Total heat dissipation @ ESP (kJ/s)2957.3 Heat Rejection to Jacket Water @ ESP (kJ/s)685.6 Radiated Heat to Ambient @ ESP (kJ/s)36.1 Heat Rejected to Exhaust @ ESP (kJ/s)1670.1 **Exhaust system** Max. exhaust back pressure (mBar)75 Max. exhaust temperature after turbocharger (°C)550 Max. bending moment of exhaust gas exit flange (Nm)10 Model : 16M33G4D2/6 Date : 30/11/22 PowerKit Engine Datasheet Page : 3 / 4 | Cooling | system | with | standard | radiator | |---------|--------|------|----------|----------| |---------|--------|------|----------|----------| | Cooling system with standard radiator | | |---|--------------------| | System designed for ambient temperature up to (°C) ¹ | 50 | | Radiator type | Mechanical | | Fan type | Belt driven pusher | | Min. inside diameter of coolant outlet pipe (mm) | 100 | | Coolant capacity of radiator and pipes (L) | 412 | | Coolant alarm (shutdown) temperature (°C) | 108 | | Thermostat opening temperature / full open temperature (°C) | 80 / 92 | | Max. additional restriction for external cooling circuit (Bar) | 0.38 | | Coolant capacity of the engine (L) | 130 | | Cooling fan airflow (m³/min)* | 2340 | | Fan absorbed power (kW) | 74 | | Additional restriction (for reference) - Duct allowance (Pa) | 150 | | * Air flow figure assumes the presence of the standard radiator provided, taking into consideration the backpress | ure caused | | Fuel system | | | Governor | ECU | | Governor steady state speed stability at constant load (ISO 8528-5 Class G3) $^{2}\dots$ | ≤ +/- 0.5 % | | Max. restriction at fuel inlet (Bar) | 0.5 | | Max. pressure at fuel inlet (Bar) | 0.5 | | Max. fuel return restriction (Bar) | 0.2 | | Max. fuel inlet temperature (°C) | 50 | | Fuel supply flow (L/hr) | 1900 | | Min. internal diameter of inlet pipe (mm) | 19 | | Min. internal diameter of return pipe (mm) | 19 | | Electrical system | | | Electrical system voltage (negative to ground) (Vdc) | 24 | | Starter power (kW) | 2 x 8.5 | | Battery charger current (A) | 55 | | Battery charger absorbed power (kW) | 1.6 | | Max. electric resistance of starting circuit (Ω) | 0.008 | | Min. sectional area of wire (mm²) | 95 | | Min. cold start temperature without auxiliary starting device (°C) ³ | 10 | | Min. cold start temperature with auxiliary starting device (°C) ³ | 25 | The indicated value is based on the AOT value of 50°C for an engine tested at 100% of the ESP Power, reflecting temperature in an open condition, without an enclosure or container, without any airflow obstruction in the front of the radiator, without air recirculation, with free exhaust gas exit and with the engine thermostatic valve in its full open condition, without a closing plate present. The reference air restriction is equal to 50Pa. For the equivalent ATB (Air-to-Boil) performance in a customer or project basis, please consult Baudouin Application Engineering. ² This refers only to the frequency response of the engine and should not be confused with the performance class of the Generator Set, which is subject to additional contributing factors such as alternator selection and control settings. Engines used in emergency standby application or applications that require immediate start under load, they must be equipped with coolant heaters. Baudouin recommend heaters installation to be executed by providing constant coolant circulation across all the engine components. Two heaters are required for V-type engines, one per each side. Model: **16M33G4D2/6** Date: 30/11/22 Page: 4/4 ## **PowerKit Engine Datasheet** **Noise** | Diesel engine noise (Acoustic power level) (dB(A)) | 119.8 | |--|-------| | Noise - upper side (dB(A)) | 102.1 | | Noise - right side (view from flywheel) (dB(A)) | 101.6 | | Noise - left side (view from flywheel) (dB(A)) | 103.8 | | Noise – front (radiator) side (dB(A)) | 101.2 | | Noise – rear (flywheel) side (dB(A)) | 102.5 | - a) Noise test made at 100% of the ESP power, at 1 mt. distance, on engine without radiator, without cooling fan and without silencer. - b) Noise test refers to ISO 6798 norm: "Reciprocating internal combustion engines. Measurement of emitted airborne noise. Engineering method and survey method". **Fuel consumption** | Rating | gr/kWh | L/hr | | |----------|-----------------------------------|-------|--| | 100% ESP | 214.5 | 483.4 | | | 100% PRP | 213.1 | 444 | | | 75% PRP | 223.8 | 349.7 | | | 50% PRP | 228.3 | 237.8 | | | 25% PRP | 249.5 | 130 | | | | Fuel consumption tolerance +/- 5% | | | #### Notes: This engine is designed for ESP (Emergency Standby) applications only, the values shown above at PRP levels refer to the Referenced Power (1750 kWm). ### **Ratings definitions** #### **Emergency Standby Power (ESP)** Emergency Standby Power is the maximum power available for a varying load for the duration of a main power network failure. The average load factor over 24 hours of operation should not exceed 70% of the engine's ESP power rating. Typical operational hours of the engine is 200 hours per year, with a maximum usage of 500 hours per year. This includes an annual maximum of 25 hours per year at the ESP power rating. No overload capability is allowed. The engine is not to be used for sustained utility paralleling applications. #### **Prime Power (PRP)** Prime Power is the maximum power available for unlimited hours of usage in a variable load application. The average load factor should not exceed 70% of the engine's PRP power rating during any 24 hour period. An overload capability of 10% is available, however, this is limited to 1 hour within every 12 hour period. - 1) All ratings are based on operating conditions under ISO 8528-1, ISO 3046, DIN6271. Performance tolerance of ±5%. - 2) Test conditions: 100 kPa, 25°C air inlet temperature, relative humidity of 30%, with fuel density 0.84 kg/L. Derating may be required for conditions outside these; please contact the factory for details. - 3) Power output curves are based on the engine operating with fuel system, water pump and lubricating oil pump; not included are battery charging alternator, fan and optional equipment. # **STAMFORD** ## S7L1D-F4 Wdg.07 - Technical Data Sheet #### **Standards** STAMFORD industrial alternators meet the requirements of the relevant parts of the IEC EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100 and AS1359. Other standards and certifications can be considered on request. #### **Quality Assurance** Alternators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001. #### **Excitation and Voltage Regulators** | Excitation System | | | | | | |--------------------------|-------|--------|---------|---------|--------------------------| | AVR Type | MX341 | MX322 | DECS100 | DECS150 | | | Voltage Regulation | ± 1% | ± 0.5% | ± 0.25% | ± 0.25% | with 4% Engine Governing | | AVR Power | PMG | PMG | PMG | PMG | | | No Load Excitation Voltage (V) | 18.56 | |----------------------------------|-------| | No Load Excitation Current (A) | 0.83 | | Full Load Excitation Voltage (V) | 63 | | Full Load Excitation Current (A) | 2.8 | | Exciter Time Constant (seconds) | 0.125 | # STAMFORD° S7L1D-F4 Wdg.07 | Electrical Data | | |---|---| | Insulation System | Н | | Stator Winding | Double Layer Concentric | | Winding Pitch | 2/3 | | Winding Leads | 6 | | Winding Number | 07 | | Number of Poles | 4 | | IP Rating | IP23 | | RFI Suppression | BS EN 61000-6-2 & BS EN 61000-6-4,VDE 0875G, VDE 0875N. Refer to factory for others | | Waveform Distortion | NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0% | | Short Circuit Ratio | 1/Xd | | Steady State X/R Ratio | 32.07 | | | 60 Hz | | Telephone Interference | TIF<50 | | Cooling Air Flow | 3.02 m³/sec | | Voltage Star (V) | 600 | | Voltage Parallel Star (V) | - | | Voltage Delta (V) | - | | kVA Base Rating (Class H) for
Reactance Values (kVA) | 2300 | | Saturated Values in Per Unit | at Base Ratings and Voltages | | Xd Dir. Axis Synchronous | 2.60 | | X'd Dir. Axis Transient | 0.20 | | X"d Dir. Axis Subtransient | 0.14 | | Xq Quad. Axis Reactance | 1.91 | | X"q Quad. Axis Subtransient | 0.22 | | XL Stator Leakage Reactance | 0.08 | | X2 Negative Sequence Reactance | 0.17 | | X0 Zero Sequence Reactance | 0.03 | | Unsaturated Values in Per Un | it at Base Ratings and Voltages | | Xd Dir. Axis Synchronous | 3.12 | | X'd Dir. Axis Transient | 0.23 | | X"d Dir. Axis Subtransient | 0.16 | | Xq Quad. Axis Reactance | 1.97 | | X"q Quad. Axis Subtransient | 0.26 | | XL Stator Leakage Reactance | 0.09 | | XIr Rotor Leakage Reactance | 0.20 | | X2 Negative Sequence Reactance | 0.21 | | X0 Zero Sequence Reactance | 0.04 | ## S7L1D-F4 Wdg.07 | Time Constants (Seconds) | | | | | |--|---|---------------------|--|--| | T'd Transient Time Const. | 0.1 | 141 | | | | T"d Sub-Transient Time Const. | 0.016 | | | | | T'do O.C. Field Time Const. | 4.420 | | | | | Ta Armature Time Const. | 0.0 | 040 | | | | T''q Sub-Transient Time Const. | 0.0 | 100 | | | | Resistances in Ohms (Ω) at 2 | 2°C | | | | | Stator Winding Resistance (Ra), per phase for series connected | | 0131 | | | | Rotor Winding Resistance (Rf) | 1. | 95 | | | | Exciter Stator Winding Resistance | 22 | 2.3 | | | | Exciter Rotor Winding Resistance per phase | 0.0 | 065 | | | | PMG Phase Resistance (Rpmg) per phase | 1. | 91 | | | | Positive Sequence Resistance (R1) | 0.0 | 016 | | | | Negative Sequence Resistance (R2) | 0.0 | 019 | | | | Zero Sequence Resistance (R0) | 0.0 | 016 | | | | Saturation Factors | 60 | 0V | | | | SG1.0 | 0.2 | 0.271 | | | | SG1.2 | 2.149 | | | | | Mechanical Data | | | | | | Shaft and Keys | All alternator rotors are dynamically balanced to minimum vibration in operation. Two bearing gen | | | | | | 1 Bearing | 2 Bearing | | | | SAE Adaptor | SAE0, SAE00 | SAE0, SAE00 | | | | Moment of Inertia | 40.98 kgm² | 40.08 kgm² | | | | Weight Wound Stator | 1518kg | 1518kg | | | | Weight Wound Rotor | 1353kg | 1300kg | | | | Weight Complete Alternator | 3350kg | 3264kg | | | | Shipping weight in a Crate | 3399kg | 3313kg | | | | Packing Crate Size | 200 x 105 x 155(cm) | 200 x 105 x 155(cm) | | | | Maximum Over Speed | 2250 RPM fo | r two minutes | | | | Bearing Drive End | F | BALL. 6228 C3 | | | | Bearing Non-Drive End | BALL. 6319 C3 | BALL. 6319 C3 | | | ### THREE PHASE EFFICIENCY CURVES ### 60Hz S7L1D-F4 Wdg.07 ### **Locked Rotor Motor Starting Curves - Separately Excited** | Transient Voltage | Transient Voltage Dip Scaling Factor | | Rise Scaling Factor | |-------------------|--------------------------------------|------------|---------------------| | Lagging PF | Scaling Factor | Lagging PF | Scaling Factor | | <= 0.4 | 1.00 | <= 0.4 | 1.25 | | 0.5 | 0.95 | 0.5 | 1.20 | | 0.6 | 0.90 | 0.6 | 1.15 | | 0.7 | 0.86 | 0.7 | 1.10 | | 0.8 | 0.83 | > 0.7 | 1.00 | | 0.9 | 0.75 | | | | 0.95 | 0.70 | | | | 1 | 0.65 | | | Note: To determine % Transient Voltage Dip or Voltage Rise at various PF, multiply the % Voltage Dip from the curve directly by the Scaling Factor. S7L1D-F4 Wdg.07 ### Three-phase Short Circuit Decrement Curve - Separately Excited ## 60Hz Sustained Short Circuit = 6597 Amps #### Note 1 The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage: | 50 | 50Hz | | Hz | |---------|--------|---------|--------| | Voltage | Factor | Voltage | Factor | | - | - | 600V | x 1.00 | | - | - | - | • | | - | - | - | - | | - | - | - | - | The sustained current value is constant irrespective of voltage level #### Note 2 The sustained current values are for MX341 AVR. For MX322 and Digital AVR 1.2 factor to be applied to the sustained short circuit #### Note 3 The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit: | | 3-phase | 2-phase L-L | 1-phase L-N | |-------------------------|---------|-------------|-------------| | Instantaneous | x 1.00 | x 0.87 | x 1.30 | | Minimum | x 1.00 | x 1.80 | x 3.20 | | Sustained | x 1.00 | x 1.50 | x 2.50 | | Max. sustained duration | 10 sec. | 5 sec. | 2 sec. | All other times are unchanged #### Note 4 Curves are drawn for Star connections under no-load excitation at rated speeds. For other connection (where applicable) the following multipliers should be applied to current values as shown: Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732 ### **Typical Alternator Operating Charts** ### 600V/60Hz #### 3/L1D-F4 Wag.0/ **RATINGS AT 0.8 POWER FACTOR** | | Class - Temp Rise | Standby - 163/27°C | Standby - 150/40°C | Cont. H - 125/40°C | Cont. F - 105/40°C | |-------------|-------------------|--------------------|--------------------|--------------------|--------------------| | | Star (V) | N/A | N/A | N/A | N/A | | 50 | Parallel Star (V) | N/A | N/A | N/A | N/A | | Hz | Delta (V) | N/A | N/A | N/A | N/A | | | kVA | N/A | N/A | N/A | N/A | | | kW | N/A | N/A | N/A | N/A | | | Efficiency (%) | N/A | N/A | N/A | N/A | | | kW Input | N/A | N/A | N/A | N/A | | | Star (V) | 600 | 600 | 600 | 600 | |----|-------------------|------|------|------|------| | 60 | Parallel Star (V) | N/A | N/A | N/A | N/A | | Hz | Delta (V) | N/A | N/A | N/A | N/A | | | kVA | 2469 | 2400 | 2300 | 2144 | | | kW | 1975 | 1920 | 1840 | 1715 | | | Efficiency (%) | 96.1 | 96.1 | 96.2 | 96.3 | | | kW Input | 2056 | 1997 | 1913 | 1781 | ### De-rates All values tabulated above are subject to the following reductions: - 5% when air inlet filters are fitted - 3% for every 500 meters by which the operating altitude exceeds 1000 meters above mean sea level - 3% for every 5°C by which the operational ambient temperature exceeds 40°C @ Class H temperature rise (please refer to applications for ambient temperature de-rates at other temperature rise classes) - For any other operating conditions impacting the cooling circuit please refer to applications Note: Requirement for operating in an ambient exceeding 60°C and altitude exceeding 4000 meters (for <690V) or 1500 meters (for >690V) must be referred to applications. #### **Dimensional and Torsional Drawing** For dimensional and torsional information please refer to the alternator General Arrangement and rotor drawings available on our website (http://stamford-avk.com/) **Note:** Continuous development of our products means that the information contained in our data sheets can change without notice, and specifications should always be confirmed with Cummins Generator Technologies prior to purchase. Follow us @stamfordavk Cummins Generator Technologies View our videos at youtube.com/stamfordavk news.stamford-avk.com For Applications Support: applications@cummins.com For Customer Service: emea.service@cummins.com For General Enquiries: Stamford-avk@cummins.com Copyright 2016. Cummins Generator Technologies Ltd. All rights reserved. Cummins and the Cummins logo are registered trade marks of Cummins Inc. STAMFORD is a registered trade mark of Cummins Generator Technologies Ltd. Certificate Number UL-US-2345744-0 Report Reference AU6440-20231107 Date 10-Nov-2023 IGSASADECV Issued to: PROLONGACION PASEO DE LA REFORMA # 2977 COL CUAJIMALPA MEXICO, Mexico 05000 Mexico This is to certify that representative samples of FTSR - Engine Generators See Addendum Page for Product Designation(s). Have been evaluated by UL in accordance with the Standard(s) indicated on this Certificate. UL 2200, 2nd Ed., Issue Date: 2012-06-01, Revision Date: Standard(s) for Safety: 2015-07-29 Additional Information: See the UL Online Certifications Directory at https://ig.ulprospector.com for additional information This Certificate of Compliance indicates that representative samples of the product described in the certification report have met the requirements for UL certification. It does not provide authorization to apply the UL Mark. Only the Authorization Page that references the Follow-Up Services Procedure for ongoing surveillance provides authorization to apply the UL Mark. Only those products bearing the UL Mark should be considered as being UL Certified and covered under UL's Follow-Up Services. Look for the UL Certification Mark on the product. Deborah Jennings-Conner, VP Regulatory Services d documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, plo Certificate Number UL-US-2345744-0 Report Reference AU6440-20231107 Date 10-Nov-2023 This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements | Model | Category Description | |---|----------------------| | GSBD00700S, GSBD00700L, GSBD00700LT
GSBD00700W | Engine Generators | | GSBD00800S, GSBD00800L, GSBD00800LT
GSBD00800W | Engine Generators | | GSBD01000S, GSBD01000L, GSBD01000W | Engine Generators | | GSBD01300S, GSBD01300L, GSBD01300W | Engine Generators | | GSBD01500S, GSBD01500L, GSBD01500W | Engine Generators | | GSBD01700S, GSBD01700L, GSBD01700W,
GSBD01750S, GSBD01750L | Engine Generators | | GSBD01800S, GSBD01800L | Engine Generators | | GSBD02000S, GSBD02000L | Engine Generators | | GSBD02300S, GSBD02300L | Engine Generators | | GSBD02500S, GSBD02500L | Engine Generators | | GSBD02640S, GSBD02640L | Engine Generators | | GSBD02800S, GSBD02800L | Engine Generators | | GSBD03000S, GSBD03000L | Engine Generators | | GSBD03300S, GSBD03300L | Engine Generators | | GSBD30600S, GSBD30600L, GSBD30600LT
GSBD30600W | Engine Generators | | GSBD30633S, GSBD30633L, GSBD30633LT
GSBD30633W | Engine Generators | | GSBD30644S, GSBD30644L, GSBD30644LT
GSBD30644W | Engine Generators | Debrah Jenning - Course Deborah Jennings-Conner, VP Regulatory Services UL LLC Certificate Number UL-CA-2339551-0 Report Reference AU6440-20231107 Date 10-Nov-2023 Issued to: IGSA S A DE C V PROLONGACION PASEO DE LA REFORMA # 2977 COL CUAJIMALPA MEXICO, Mexico 05000 Mexico This is to certify that representative samples of FTSR7 - Engine Generators Certified for Canada See Addendum Page for Product Designation(s). Have been evaluated by UL in accordance with the Standard(s) indicated on this Certificate. Standard(s) for Safety: CSA C22.2 No. 14, Edition 13, Issue Date 2018-03, Revision Date 2022-06 Additional Information: See the UL Online Certifications Directory at https://ig.ulprospector.com for additional information This Certificate of Compliance indicates that representative samples of the product described in the certification report have met the requirements for UL certification. It does not provide authorization to apply the UL Mark. Only the Authorization Page that references the Follow-Up Services Procedure for ongoing surveillance provides authorization to apply the UL Mark. Only those products bearing the UL Mark should be considered as being UL Certified and covered under UL's Follow-Up Services. Look for the UL Certification Mark on the product. Deborah Jennings-Conner, VP Regulatory Services UL LLC Certificate Number UL-CA-2339551-0 Report Reference AU6440-20231107 Date 10-Nov-2023 This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements | Model | Category Description | |---|----------------------| | GSBD00700S, GSBD00700L, GSBD00700LT
GSBD00700W | Engine Generators | | GSBD00800S, GSBD00800L, GSBD00800LT
GSBD00800W | Engine Generators | | GSBD01000S, GSBD01000L, GSBD01000W | Engine Generators | | GSBD01300S, GSBD01300L, GSBD01300W | Engine Generators | | GSBD01500S, GSBD01500L, GSBD01500W | Engine Generators | | GSBD01700S, GSBD01700L, GSBD01700W,
GSBD01750S, GSBD01750L | Engine Generators | | GSBD01800S, GSBD01800L | Engine Generators | | GSBD02000S, GSBD02000L | Engine Generators | | GSBD02300S, GSBD02300L | Engine Generators | | GSBD02500S, GSBD02500L | Engine Generators | | GSBD02640S, GSBD02640L | Engine Generators | | GSBD02800S, GSBD02800L | Engine Generators | | GSBD03000S, GSBD03000L | Engine Generators | | GSBD03300S, GSBD03300L | Engine Generators | | GSBD30600S, GSBD30600L, GSBD30600LT
GSBD30600W | Engine Generators | | GSBD30633S, GSBD30633L, GSBD30633LT
GSBD30633W | Engine Generators | | GSBD30644S, GSBD30644L, GSBD30644LT
GSBD30644W | Engine Generators | Debrah Jenning - Course Deborah Jennings-Conner, VP Regulatory Services UL LLC Certificate Number MH63698 Report Reference MH63698-20200103 Issue Date 2020-JANUARY-08 Issued to: IGSA S A DE C V PROLONGACION PASEO DE LA REFORMA 2977 COL CUAJIMALPA 05000 MEXICO DF MEXICO This certificate confirms that representative samples of SPECIAL-PURPOSE TANKS Secondary Containment Generator Base Tanks Have been investigated by UL in accordance with the Standard(s) indicated on this Certificate. Standard(s) for Safety: UL 142, STANDARD FOR STEEL ABOVEGROUND TANKS FOR FLAMMABLE AND COMBUSTIBLE LIQUIDS. UL 142A STANDARD FOR SPECIAL PURPOSE ABOVEGROUND TANKS FOR SPECIFIC FLAMMABLE OR COMBUSTIBLE LIQUIDS. CAN/ULC S601, STANDARD FOR SHOP FABRICATED STEEL ABOVEGROUND TANKS FOR FLAMMABLE AND COMBUSTIBLE LIQUIDS. Additional Information: See the UL Online Certifications Directory at https://iq.ulprospector.com for additional information. This *Certificate of Compliance* does not provide authorization to apply the UL Mark. Only the UL Follow-Up Services Procedure provides authorization to apply the UL Mark. Only those products bearing the UL Mark should be considered as being UL Certified and covered under UL's Follow-Up Services. Look for the UL Certification Mark on the product. Ba Wally Bruce Mahrandol Director North Bruce Mahrenholz, Director North American Certification Program UL LLC Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, please contact a local UL Customer Service Representative at http://ul.com/aboutul/locations/